mirror of
https://github.com/zadam/trilium.git
synced 2025-11-02 03:16:11 +01:00
325 lines
13 KiB
TypeScript
325 lines
13 KiB
TypeScript
import log from "../../../log.js";
|
|
import { BaseEmbeddingProvider } from "../base_embeddings.js";
|
|
import type { EmbeddingConfig } from "../embeddings_interface.js";
|
|
import { NormalizationStatus } from "../embeddings_interface.js";
|
|
import { LLM_CONSTANTS } from "../../constants/provider_constants.js";
|
|
import type { EmbeddingModelInfo } from "../../interfaces/embedding_interfaces.js";
|
|
import { Ollama } from "ollama";
|
|
|
|
/**
|
|
* Ollama embedding provider implementation using the official Ollama client
|
|
*/
|
|
export class OllamaEmbeddingProvider extends BaseEmbeddingProvider {
|
|
name = "ollama";
|
|
private client: Ollama | null = null;
|
|
|
|
constructor(config: EmbeddingConfig) {
|
|
super(config);
|
|
}
|
|
|
|
/**
|
|
* Get the Ollama client instance
|
|
*/
|
|
private getClient(): Ollama {
|
|
if (!this.client) {
|
|
this.client = new Ollama({ host: this.baseUrl });
|
|
}
|
|
return this.client;
|
|
}
|
|
|
|
/**
|
|
* Initialize the provider by detecting model capabilities
|
|
*/
|
|
async initialize(): Promise<void> {
|
|
const modelName = this.config.model || "llama3";
|
|
try {
|
|
// Detect model capabilities
|
|
const modelInfo = await this.getModelInfo(modelName);
|
|
|
|
// Update the config dimension
|
|
this.config.dimension = modelInfo.dimension;
|
|
|
|
log.info(`Ollama model ${modelName} initialized with dimension ${this.config.dimension} and context window ${modelInfo.contextWidth}`);
|
|
} catch (error: any) {
|
|
log.error(`Error initializing Ollama provider: ${error.message}`);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Fetch detailed model information from Ollama API
|
|
* @param modelName The name of the model to fetch information for
|
|
*/
|
|
private async fetchModelCapabilities(modelName: string): Promise<EmbeddingModelInfo | null> {
|
|
try {
|
|
const client = this.getClient();
|
|
|
|
// Get model info using the client's show method
|
|
const modelData = await client.show({ model: modelName });
|
|
|
|
if (modelData && modelData.parameters) {
|
|
const params = modelData.parameters as any;
|
|
// Extract context length from parameters (different models might use different parameter names)
|
|
const contextWindow = params.context_length ||
|
|
params.num_ctx ||
|
|
params.context_window ||
|
|
(LLM_CONSTANTS.OLLAMA_MODEL_CONTEXT_WINDOWS as Record<string, number>).default;
|
|
|
|
// Some models might provide embedding dimensions
|
|
const embeddingDimension = params.embedding_length || params.dim || null;
|
|
|
|
log.info(`Fetched Ollama model info for ${modelName}: context window ${contextWindow}`);
|
|
|
|
return {
|
|
name: modelName,
|
|
dimension: embeddingDimension || 0, // We'll detect this separately if not provided
|
|
contextWidth: contextWindow,
|
|
type: 'float32'
|
|
};
|
|
}
|
|
} catch (error: any) {
|
|
log.info(`Could not fetch model info from Ollama API: ${error.message}. Will try embedding test.`);
|
|
// We'll fall back to embedding test if this fails
|
|
}
|
|
|
|
return null;
|
|
}
|
|
|
|
/**
|
|
* Get model information by probing the API
|
|
*/
|
|
async getModelInfo(modelName: string): Promise<EmbeddingModelInfo> {
|
|
// Check cache first
|
|
if (this.modelInfoCache.has(modelName)) {
|
|
return this.modelInfoCache.get(modelName)!;
|
|
}
|
|
|
|
// Try to fetch model capabilities from API
|
|
const apiModelInfo = await this.fetchModelCapabilities(modelName);
|
|
if (apiModelInfo) {
|
|
// If we have context window but no embedding dimension, we need to detect the dimension
|
|
if (apiModelInfo.contextWidth && !apiModelInfo.dimension) {
|
|
try {
|
|
// Detect dimension with a test embedding
|
|
const dimension = await this.detectEmbeddingDimension(modelName);
|
|
apiModelInfo.dimension = dimension;
|
|
} catch (error) {
|
|
// If dimension detection fails, fall back to defaults
|
|
const baseModelName = modelName.split(':')[0];
|
|
apiModelInfo.dimension = (LLM_CONSTANTS.OLLAMA_MODEL_DIMENSIONS as Record<string, number>)[baseModelName] ||
|
|
(LLM_CONSTANTS.OLLAMA_MODEL_DIMENSIONS as Record<string, number>).default;
|
|
}
|
|
}
|
|
|
|
// Cache and return the API-provided info
|
|
this.modelInfoCache.set(modelName, apiModelInfo);
|
|
this.config.dimension = apiModelInfo.dimension;
|
|
return apiModelInfo;
|
|
}
|
|
|
|
// If API info fetch fails, fall back to test embedding
|
|
try {
|
|
const dimension = await this.detectEmbeddingDimension(modelName);
|
|
const baseModelName = modelName.split(':')[0];
|
|
const contextWindow = (LLM_CONSTANTS.OLLAMA_MODEL_CONTEXT_WINDOWS as Record<string, number>)[baseModelName] ||
|
|
(LLM_CONSTANTS.OLLAMA_MODEL_CONTEXT_WINDOWS as Record<string, number>).default;
|
|
|
|
const modelInfo: EmbeddingModelInfo = {
|
|
name: modelName,
|
|
dimension,
|
|
contextWidth: contextWindow,
|
|
type: 'float32'
|
|
};
|
|
this.modelInfoCache.set(modelName, modelInfo);
|
|
this.config.dimension = dimension;
|
|
|
|
log.info(`Detected Ollama model ${modelName} with dimension ${dimension} (context: ${contextWindow})`);
|
|
return modelInfo;
|
|
} catch (error: any) {
|
|
log.error(`Error detecting Ollama model capabilities: ${error.message}`);
|
|
|
|
// If all detection fails, use defaults based on model name
|
|
const baseModelName = modelName.split(':')[0];
|
|
const dimension = (LLM_CONSTANTS.OLLAMA_MODEL_DIMENSIONS as Record<string, number>)[baseModelName] ||
|
|
(LLM_CONSTANTS.OLLAMA_MODEL_DIMENSIONS as Record<string, number>).default;
|
|
const contextWindow = (LLM_CONSTANTS.OLLAMA_MODEL_CONTEXT_WINDOWS as Record<string, number>)[baseModelName] ||
|
|
(LLM_CONSTANTS.OLLAMA_MODEL_CONTEXT_WINDOWS as Record<string, number>).default;
|
|
|
|
log.info(`Using default parameters for model ${modelName}: dimension ${dimension}, context ${contextWindow}`);
|
|
|
|
const modelInfo: EmbeddingModelInfo = {
|
|
name: modelName,
|
|
dimension,
|
|
contextWidth: contextWindow,
|
|
type: 'float32'
|
|
};
|
|
this.modelInfoCache.set(modelName, modelInfo);
|
|
this.config.dimension = dimension;
|
|
|
|
return modelInfo;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Detect embedding dimension by making a test API call
|
|
*/
|
|
private async detectEmbeddingDimension(modelName: string): Promise<number> {
|
|
try {
|
|
const client = this.getClient();
|
|
const embedResponse = await client.embeddings({
|
|
model: modelName,
|
|
prompt: "Test"
|
|
});
|
|
|
|
if (embedResponse && Array.isArray(embedResponse.embedding)) {
|
|
return embedResponse.embedding.length;
|
|
} else {
|
|
throw new Error("Could not detect embedding dimensions");
|
|
}
|
|
} catch (error) {
|
|
throw new Error(`Failed to detect embedding dimensions: ${error}`);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Get the current embedding dimension
|
|
*/
|
|
getDimension(): number {
|
|
return this.config.dimension;
|
|
}
|
|
|
|
/**
|
|
* Generate embeddings for a single text
|
|
*/
|
|
async generateEmbeddings(text: string): Promise<Float32Array> {
|
|
// Handle empty text
|
|
if (!text.trim()) {
|
|
return new Float32Array(this.config.dimension);
|
|
}
|
|
|
|
// Configuration for retries
|
|
const maxRetries = 3;
|
|
let retryCount = 0;
|
|
let lastError: any = null;
|
|
|
|
while (retryCount <= maxRetries) {
|
|
try {
|
|
const modelName = this.config.model || "llama3";
|
|
|
|
// Ensure we have model info
|
|
const modelInfo = await this.getModelInfo(modelName);
|
|
|
|
// Trim text if it might exceed context window (rough character estimate)
|
|
// This is a simplistic approach - ideally we'd count tokens properly
|
|
const charLimit = (modelInfo.contextWidth || 8192) * 4; // Rough estimate: avg 4 chars per token
|
|
const trimmedText = text.length > charLimit ? text.substring(0, charLimit) : text;
|
|
|
|
const client = this.getClient();
|
|
const response = await client.embeddings({
|
|
model: modelName,
|
|
prompt: trimmedText
|
|
});
|
|
|
|
if (response && Array.isArray(response.embedding)) {
|
|
// Success! Return the embedding
|
|
return new Float32Array(response.embedding);
|
|
} else {
|
|
throw new Error("Unexpected response structure from Ollama API");
|
|
}
|
|
} catch (error: any) {
|
|
lastError = error;
|
|
// Only retry on timeout or connection errors
|
|
const errorMessage = error.message || "Unknown error";
|
|
const isTimeoutError = errorMessage.includes('timeout') ||
|
|
errorMessage.includes('socket hang up') ||
|
|
errorMessage.includes('ECONNREFUSED') ||
|
|
errorMessage.includes('ECONNRESET') ||
|
|
errorMessage.includes('AbortError') ||
|
|
errorMessage.includes('NetworkError');
|
|
|
|
if (isTimeoutError && retryCount < maxRetries) {
|
|
// Exponential backoff with jitter
|
|
const delay = Math.min(Math.pow(2, retryCount) * 1000 + Math.random() * 1000, 15000);
|
|
log.info(`Ollama embedding timeout, retrying in ${Math.round(delay/1000)}s (attempt ${retryCount + 1}/${maxRetries})`);
|
|
await new Promise(resolve => setTimeout(resolve, delay));
|
|
retryCount++;
|
|
} else {
|
|
// Non-retryable error or max retries exceeded
|
|
const errorMessage = error.message || "Unknown error";
|
|
log.error(`Ollama embedding error: ${errorMessage}`);
|
|
throw new Error(`Ollama embedding error: ${errorMessage}`);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we get here, we've exceeded our retry limit
|
|
const errorMessage = lastError.message || "Unknown error";
|
|
log.error(`Ollama embedding error after ${maxRetries} retries: ${errorMessage}`);
|
|
throw new Error(`Ollama embedding error after ${maxRetries} retries: ${errorMessage}`);
|
|
}
|
|
|
|
/**
|
|
* More specific implementation of batch size error detection for Ollama
|
|
*/
|
|
protected isBatchSizeError(error: any): boolean {
|
|
const errorMessage = error?.message || '';
|
|
const ollamaBatchSizeErrorPatterns = [
|
|
'context length', 'token limit', 'out of memory',
|
|
'too large', 'overloaded', 'prompt too long',
|
|
'too many tokens', 'maximum size'
|
|
];
|
|
|
|
return ollamaBatchSizeErrorPatterns.some(pattern =>
|
|
errorMessage.toLowerCase().includes(pattern.toLowerCase())
|
|
);
|
|
}
|
|
|
|
/**
|
|
* Generate embeddings for multiple texts
|
|
*
|
|
* Note: Ollama API doesn't support batch embedding, so we process them sequentially
|
|
* but using the adaptive batch processor to handle rate limits and retries
|
|
*/
|
|
async generateBatchEmbeddings(texts: string[]): Promise<Float32Array[]> {
|
|
if (texts.length === 0) {
|
|
return [];
|
|
}
|
|
|
|
try {
|
|
return await this.processWithAdaptiveBatch(
|
|
texts,
|
|
async (batch) => {
|
|
const results: Float32Array[] = [];
|
|
|
|
// For Ollama, we have to process one at a time
|
|
for (const text of batch) {
|
|
// Skip empty texts
|
|
if (!text.trim()) {
|
|
results.push(new Float32Array(this.config.dimension));
|
|
continue;
|
|
}
|
|
|
|
const embedding = await this.generateEmbeddings(text);
|
|
results.push(embedding);
|
|
}
|
|
|
|
return results;
|
|
},
|
|
this.isBatchSizeError
|
|
);
|
|
}
|
|
catch (error: any) {
|
|
const errorMessage = error.message || "Unknown error";
|
|
log.error(`Ollama batch embedding error: ${errorMessage}`);
|
|
throw new Error(`Ollama batch embedding error: ${errorMessage}`);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns the normalization status for Ollama embeddings
|
|
* Ollama embeddings are not guaranteed to be normalized
|
|
*/
|
|
getNormalizationStatus(): NormalizationStatus {
|
|
return NormalizationStatus.NEVER; // Be conservative and always normalize
|
|
}
|
|
}
|